cAMP-dependent exocytosis and vesicle traffic regulate CFTR and fluid transport in rat jejunum in vivo.
نویسندگان
چکیده
The cystic fibrosis transmembrane conductance regulator (CFTR) channel is regulated by cAMP-dependent vesicle traffic and exocytosis to the apical membrane in some cell types, but this has not been demonstrated in the intestinal crypt. The distribution of CFTR, lactase (control), and fluid secretion were determined in rat jejunum after cAMP activation in the presence of nocodazole and primaquine to disrupt vesicle traffic. CFTR and lactase were localized by immunofluorescence, and surface proteins were detected by biotinylation of enterocytes. Immunoprecipitates from biotinylated and nonbiotinylated cells were analyzed by streptavidin detection and immunoblots. Immunolocalization confirmed a cAMP-dependent shift of CFTR but not lactase from a subapical compartment to the apical surface associated with fluid secretion that was reduced in the presence of primaquine and nocodazole. Analysis of immunoblots from immunoprecipitates after biotinylation revealed a 3.8 +/- 1.7-fold (P < 0.005) increase of surface-exposed CFTR after vasoactive intestinal peptide (VIP). These measurements provide independent corroboration supporting a role for vesicle traffic in regulating CFTR and cAMP-induced fluid transport in the intestine.
منابع مشابه
Syntaxin 3 is necessary for cAMP- and cGMP-regulated exocytosis of CFTR: implications for enterotoxigenic diarrhea.
Enterotoxins elaborated by Vibrio cholerae and Escherichia coli cannot elicit fluid secretion in the absence of functional cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels. After enterotoxin exposure, CFTR channels are rapidly recruited from endosomes and undergo exocytic insertion into the apical plasma membrane of enterocytes to increase the number of channels on t...
متن کاملSTa and cGMP stimulate CFTR translocation to the surface of villus enterocytes in rat jejunum and is regulated by protein kinase G.
The cystic fibrosis transmembrane conductance regulator (CFTR) is critical to cAMP- and cGMP-activated intestinal anion secretion and the pathogenesis of secretory diarrhea. Enterotoxins released by Vibrio cholerae (cholera toxin) and Escherichia coli (heat stable enterotoxin, or STa) activate intracellular cAMP and cGMP and signal CFTR on the apical plasma membrane of small intestinal enterocy...
متن کاملRegulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1
Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...
متن کاملCell-specific effects of luminal acid, bicarbonate, cAMP, and carbachol on transporter trafficking in the intestine.
Changes in intestinal luminal pH affect mucosal ion transport. The aim of this study was to compare how luminal pH and specific second messengers modulate the membrane traffic of four major ion transporters (CFTR, NHE3, NKCC1, and NBCe1) in rat small intestine. Ligated duodenal, jejunal, and ileal segments were infused with acidic or alkaline saline, 8-Br-cAMP, or the calcium agonist carbachol ...
متن کاملFunctional vacuolar ATPase (V-ATPase) proton pumps traffic to the enterocyte brush border membrane and require CFTR.
Vacuolar ATPases (V-ATPases) are highly conserved proton pumps that regulate organelle pH. Epithelial luminal pH is also regulated by cAMP-dependent traffic of specific subunits of the V-ATPase complex from endosomes into the apical membrane. In the intestine, cAMP-dependent traffic of cystic fibrosis transmembrane conductance regulator (CFTR) channels and the sodium hydrogen exchanger (NHE3) i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 284 2 شماره
صفحات -
تاریخ انتشار 2003